Book Review: The Structure of Scientific Revolutions – Chapter 2: The Route to Normal Science.

In this chapter or essay as he refers to it, Kuhn writes about what he considers to be the route to normal science. In this chapter he elaborates on his distinction between normal and revolutionary science and it makes for interesting reading. Early in the chapter Kuhn suggests that textbooks offer scientists a medium through which they can arrive at a consensus. He also notes that the road to a research consensus is ‘extraordinarily arduous’. The textbook states the common problems facing a research community. There were two features he suggests are necessary for revolutionary science

1. Unprecedented findings which were sufficient to draw people away from other areas of study suggesting that there was a competitive element to the process.

2. That revolutionary science would be sufficiently open-ended to enable others to develop theories from this. In other words they could become ‘stakeholders’ in the process.

I applied the ‘Darwin test’ on this. What I mean by this is that Darwin’s theory of natural selection is so robust that for any philosophy of science should make predictions which can be tested and would hold true when applied to Darwin’s theory of natural selection. For the points above, I hope the reader will agree that Darwin’s work ‘On the Origin of Species’ was both unprecedented, produced a very strong following and also gave rise to an entire field of study which has been occupying scientists for the past 150 years.

Kuhn then goes on to discuss revolutionary science in physical optics and with regards to electrical phenomenon. In both cases he provides the reader with evidence that prior to the ‘revolution’ there were many small areas of research founded on different assumptions or attempting to explain different phenomenon. What comes after the ‘revolution’ in Kuhn’s interpretation is very interesting and I thought was very authentic. Thus he suggests that a language arises which can be readily understood by those outside of the research community although this changes very rapidly. After a time the community develop a specialised language. Those who ignore the revolutionary paradigm are ‘bred out of the profession’. The research community develops more specialised equipment to investigate every more specialised questions.

He also has some interesting things to say about different branches of science. Thus for the social sciences he suggests that the revolutionary paradigm may be occuring today (although this would have been some time ago when the book was originally written). However such a grand statement should be qualified with more specific examples to support his argument. Another possibility is that the social sciences may operate differently to the natural sciences in terms of how research communities are organised, behaviours within the communities and even the nature of the questions that are being posed. I would argue therefore that a much closer examination needs to be made in order to justify even simple statements of this type. The strength of his book lies in how he guides the reader from examples through to his conclusions and there is no reason why this should be abandoned when discussing a very complex branch of science. When he refers to medicine however he makes an interesting observation that this is strongly driven by an external social need. He also suggests that in astronomy the first paradigms arose in ‘prehistory’ and no doubt he implies that navigation by the stars was a necessary skill for hunter-gatherers. He also notes that technology assists in gathering data necessary for the development of a science.

For me Kuhn’s framing of the paradigm has another implication. My interpretation of Kuhn’s paradigm is that it is a function of the ‘minds’ of the scientists rather than a function of the underlying properties of the universe. In other words revolutionary thinking isnt so much about a better understanding of the world but rather one that is more successful in engaging the scientific community.

References

Thomas Kuhn. The Structure of Scientific Revolutions. Narrated by Dennis Holland. (Paperback originally published in 1962). Audible. 2009.

Appendix

For a review of Chapter 1 see here.

Index: An index of the site can be found here. The page contains links to all of the articles in the blog in chronological order. Twitter: You can follow ‘The Amazing World of Psychiatry’ Twitter by clicking on this link. Podcast: You can listen to this post on Odiogo by clicking on this link (there may be a small delay between publishing of the blog article and the availability of the podcast). It is available for a limited period. TAWOP Channel: You can follow the TAWOP Channel on YouTube by clicking on this link. Responses: If you have any comments, you can leave them below or alternatively e-mail justinmarley17@yahoo.co.uk. Disclaimer: The comments made here represent the opinions of the author and do not represent the profession or any body/organisation. The comments made here are not meant as a source of medical advice and those seeking medical advice are advised to consult with their own doctor. The author is not responsible for the contents of any external sites that are linked to in this blog.

2 thoughts on “Book Review: The Structure of Scientific Revolutions – Chapter 2: The Route to Normal Science.

  1. Pingback: Is the Neural Substrate for Attention Heritable? « The Amazing World of Psychiatry: A Psychiatry Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s