Review of Thomas Kuhn’s ‘The Structure of Scientific Revolutions’ – Chapter 8

In Chapter 8 of Thomas Kuhn’s ‘The Structure of Scientific Revolutions’ is titled ‘The Response to Crisis’. Whereas in Chapter 7, Kuhn focuses on how the crisis in science arises in this chapter he elaborates on how the scientific community responds to this crisis. He makes the interesting point that in criticising one theory the scientist must propose an alternative otherwise this is not the pursuit of science.  What is also interesting is that he suggests that when this competitive process ends, the branch of science becomes static and in the example he gives it becomes a ‘research tool’. Kuhn suggests that there are always discrepancies even in the most successful of paradigms. With a move towards crisis there are increasingly divergent explanations and there is a loss of identity within the field. Indeed Kuhn maintains that all crises involve a blurring of paradigms. The crises are closed in one of three ways. In the first case, the crisis is handled. In the second scenario there is a resistance to radical approaches. In the final scenario the crisis leads to the emergence of a new candidate for paradigm.

Kuhn then goes onto discuss commentators on the field who refer to Gestalt theory in which a visual perception is dependent on the whole rather than part of an object. So if the reader looks at the cube below, the lower square face can be interpreted either as sitting at the front of the cube or the back of the cube. In both cases the square takes on a different meaning within the whole object that is perceived. In the same manner Kuhn suggests that new paradigms lead to a different way of seeing a body of empirical facts. He is quick to point out however that this is a crude analogy and that scientists do not quickly switch back and forth between paradigms. Nevertheless it illustrates the essence of his arguments well.

 

Alan De Smet, ‘Multistability‘ (Public Domain)

 

Kuhn then goes on to say that the scientist having identifed the anamoly central to a crisis will go on to explore the anomaly and to better characterise it. In crisis, speculative theories multiply and increase the chance of a successful paradigm being reached. He also suggests that philosophical enquiry into assumptions can challenge some of the tenets of the current paradigm. Finally Kuhn finishes by commenting that many scientists leading to scientific revolutions are deeply immersed in crisis and they are either very young or new to the field in change which he interprets to mean that there thinking has not been shaped by the component rules of a paradigm. However Charles Darwin would be a notable exception having published ‘On the Origin of Species’ at a mature age and with a comprehensive knowledge of the related fields in biology. Nevertheless there are numerous counterexamples and the main result of this chapter is that Kuhn provides the reader with very effective tools for thinking about science in transition.

* One thought I had here was that in the very early stages of a science there must be a lot of theories that are initially developed but which are quickly shaped by the experimental facts. In this way many theories would exist before quickly falling to experimental findings in which case there would be a ‘survival of the fittest’ theories  which are tested against each other. This has a number of implications.

Firstly that a philosophical system might define this pre-science phase in which a large number of theories exist without being tested against the experimental facts. The brain’s analytical and other abilities are used as an alternative to hypothesis testing in the real world in order to generate ‘realistic’ solutions based on experience and intuition. As time proceeds and assuming the system has an efficient or effective ‘memory’ and scientific enquiry produces a growing body of empirical facts the competitive process in which proponents of different models challenge each other’s models and refine their own leads to ‘fitter’ models (using evolutionary terms). However these models are adapted to the empirical facts which in turn are a byproduct of the initial enquiries in this area.In this manner, mathematics might offer the best ‘starting conditions’ for this philosophical enquiry as these starting conditions give philosophical enquiry the least opportunity for diverging from reality using such an approach.

Secondly fitter theories might well diverge significantly from an explanation of reality depending on their starting conditions although there might be other phenomenon which curtail that line of enquiry as this divergence becomes more evident. What this would also mean is that the development of the most effective scientific theories is not only a measure of how effectively a theory fits with the empirical data but is also a marker of how effectively a theory keeps the focus on the empirical data in which the theory initially flourished as well as a measure of how effectively the theory recruits and retains proponents.

References

Thomas Kuhn. The Structure of Scientific Revolutions. Narrated by Dennis Holland. (Paperback originally published in 1962). Audible. 2009.

Appendix

For a review of the Introduction see here.

For a review of Chapter 1 see here.

For a review of Chapter 2 see here.

For a review of Chapter 3 see here.

For a review of Chapter 4 see here.

For a review of Chapter 5 see here.

For a review of Chapter 6 see here.

For a review of Chapter 7 see here.

An index of the site can be found here. The page contains links to all of the articles in the blog in chronological order. Twitter: You can follow ‘The Amazing World of Psychiatry’ Twitter by clicking on this link. Podcast: You can listen to this post on Odiogo by clicking on this link (there may be a small delay between publishing of the blog article and the availability of the podcast). It is available for a limited period. TAWOP Channel: You can follow the TAWOP Channel on YouTube by clicking on this link. Responses: If you have any comments, you can leave them below or alternatively e-mail justinmarley17@yahoo.co.uk. Disclaimer: The comments made here represent the opinions of the author and do not represent the profession or any body/organisation. The comments made here are not meant as a source of medical advice and those seeking medical advice are advised to consult with their own doctor. The author is not responsible for the contents of any external sites that are linked to in this blog.

3 comments

Leave a comment